WinTRS80 - TRS-80 Model I/III/4 emulator for Windows 95/NT Systems

Syntax

WinTRS80 [/model]

Description

WinTRS80 is built on top of a Z-80 emulator, with added routines to support keyboard and video I/O through a Windows interface. The hardware emulation can operate as a TRS-80 Model I, Model III, or Model 4.

WinTRS80 supports 48K of RAM in Model I or Model III mode, 128K in Model 4 mode. Floppy disks and hard disks are emulated using files to store the data. A printer is emulated by sending its output to PRN. If this is spooled, a Print Output menu item is provided. There is also a fairly complete emulation of cassette I/O that uses files for cassette tapes (Model I/III mode only).

Fonts

WinTRS80 exactly duplicates all fonts of the original Model I/III/4 including the special characters and Kana set. To do so, I have created 5 True-type fonts. These are the standard and kana sets in both regular and wide modes as well as a supplemental set to handle some differences and to cover the fact that Windows will not display certain characters in a font set. These 5 fonts must be installed for WinTRS80 to work properly.

Keys

The following keys have special meanings to WinTRS80:

LeftArrow or Backspace is the TRS-80 left arrow key. RightArrow or Tab is the right arrow key. UpArrow is the up arrow key. DownArrow is the down arrow key. Esc is the Break key. Home is the Clear key. Control is the Model 4 Ctrl key (address bit 7, data bit 2). Pause sends a Shift-@ to pause execution.

F1, F2, and F3 are the Model 4 function keys (address bit 7, data bits 4, 5, and 6). F1 is also the Model I Electric Pencil control key that some users added to their machines. CAPS is the Model 4 Caps Lock key (address bit 7, data bit 3). This is a toggle so ignore the light! F5 is equivalent to the @ key (so that @ can be used as a modifier key). F4 is equivalent to the 0 key (so that a shifted 0 can be obtained).

Due to a problem in VC++ the shift keys are the same (not distinct as they should be for the Model III/4. For this reason, F7 and F8 are the left and right shift keys for programs that need them. The keys [, \,], ^, _, {, |, }, and ~ activate unused positions in the keyboard matrix (address bit 3, data bits 3-7). These keys map to the corresponding ASCII characters under some TRS-80 keyboard drivers; under others, they do nothing. F9 is equivalent to underscore (address bit 3, data bit 7), so that a shifted underscore can be obtained; this maps to ASCII code 0x7f under some TRS-80 keyboard drivers.

Emulated cassette

To control the emulated cassette, a file called "cassette.ctl" in the current directory keeps track of what file is currently "loaded" as the cassette tape and the current position within that file. The operation works very much like an actual tape recorder. The cassette emulation works only in Model I or III mode. Make SURE the file has been rewound for a read and the name is correct as there is no way to break out of a read loop!

Printer

For printer support, any text sent to the TRS-80's printer (using LPRINT or LLIST, for example) is sent to PRN. A print screen is also available on the file menu.

Emulated floppy disks

In Model I mode, WinTRS80 emulates a Radio Shack Expansion Interface with the Percom Doubler or Radio Shack Doubler installed. The Doubler provided double-density disk access by allowing either the stock WD1771 FDC chip or a WD1791 chip to be selected under program control. At powerup the 1771 is selected, so operating systems with no Doubler driver see a stock system. The emulator pretends to be both a Percom and Radio Shack Doubler at the same time -- it responds to the special commands of both -- so a driver for either should work. Under LDOS, use the command "FDUBL" (newer versions of LDOS), or "PDUBL" or "RDUBL" (older versions) to install the driver.

In Model III or 4 mode, WinTRS80 emulates the stock Model III/4 floppy controller, which used a WD1793 chip (software-compatible with the WD1791) to provide both single and double density.

Four floppy drives are emulated. If all file names are blank or the drives disabled flag is set, a drive with no disk is emulated (but see below). If the user does not have write permission for a floppy file, a write-protect tab is emulated. To change floppies in an emulated drive, select a new file.

If you try to boot with no drive 0 name (that is, no disk in drive 0), WinTRS80 emulates having no disk controller. The behavior of a real machine with a disk controller in this case didn't seem useful to emulate faithfully: A real Model I hangs with a screen full of garbage; a real Model III or 4 goes into a retry loop printing "Diskette?" on the screen and rechecking whether you've inserted one.

Due to a limitation of the original Model I hardware, drive :3 cannot be double-sided in Model I mode. In the original Model I, you could not have a drive :3 at all if any drive in the system was double-sided, but the emulator is able to be more forgiving.

Emulated floppy image files can be of either of two types: JV1, compatible with Jeff Vavasour's popular freeware Model I emulator for the PC; or JV3, a compatible extension of a format first used in Vavasour's commercial Model III/4 emulator. Both types work in WinTRS80 regardless of what model it is emulating. A heuristic is used to decide which type of image is in a drive, as neither type has a "magic number" or signature.

JV1 supports only single density, single sided, with directory on track 17. Sectors must be 256 bytes long. Use FORMAT (DIR=17) to format JV1 disks with more (or less) than 35 tracks under LDOS.

JV3 is much more flexible, though it still does not support everything the real controllers could do. It is best to use JV3 for all the disk images you create, unless you need to exchange images with someone who is using the Vavasour Model I emulator. A JV3 disk can be formatted with 256 byte sectors, 1 or 2 sides, single or double density, with either FB (normal) or F8 (deleted) data address mark on any sector. You cannot format a sector with an incorrect track number or head number, or with length other than 256 bytes. You can format a sector with an intentional CRC error in the data field. The original JV3 format had a limit of 2901 total sectors, but WinTRS80 allows up to 5802. If you format more than 2901 sectors on a disk image, however, other emulators may be unable to read the additional sectors. An 80 track, double-sided, double-density (18 sector) 5-inch floppy will fit within the original 2901 sector limit; the extension to 5802 is primarily for future emulation of 8-inch drives.

The program mkdisk makes a blank emulated floppy or "bulk erases" an existing one. By default, mkdisk makes a JV3 floppy, but with the -1 flag it makes a JV1 floppy. See the mkdisk man for more information.

Early Model I operating systems used an FA data address mark for the directory (a nonstandard value supported only by the WD1771, but not the WD1791/3), while later ones wrote F8 (for Model III/4 compatibility) but could read either. To deal nicely with this problem, WinTRS80 implements the following kludge. On writing, any data address mark other than FB is recorded as F8. On reading in single density with the emulated WD1771 (available in Model I mode only), F8 is returned as FA. In all other modes, F8 is returned as F8. This trick makes the different operating systems perfectly compatible with each other, which is better than on a real Model I!

Emulated hard disks

WinTRS80 can emulate a hard disk in a file with the aid of a special LDOS driver called XTRSHARD/DCT. This driver has been tested and works under both LDOS 5.3.1 for Model I or III and TRSDOS/LS-DOS 6.3.1 for Model 4. It may or may not work under earlier LDOS versions. It definitely will not work under other TRS-80 operating systems or with emulators other than WinTRS80. The hard disk format was designed by Matthew Reed for his Model I/III and Model 4 emulators; WinTRS80 duplicates the format so that users can exchange hard drive images across the emulators.

To use the hard disk emulation, first run the mkdisk program to create a blank hard drive (.hdv) file. Typical usage would be: mkdisk -h mydisk.hdv. See the mkdisk man for other options.

Second, WinTRS80 supports up to eight hard drives, with names selected from the Hard Drive menu.

Third, make sure an appropriate version of LDOS is in emulated floppy drive 0, and the supplied file utility.dsk is in another emulated floppy drive. Boot LDOS. If you are using Model I LDOS 5.3.1, patch a bug in the FORMAT command by typing PATCH FORMAT/CMD.UTILITY M1FORMAT/FIX. You need to apply this patch only once. It must not be applied to Model III or Model 4 LDOS.

Fourth, type the following commands. Here d is the LDOS drive number you want to use for the hard drive (a typical choice would be 4) and u is the unit number you chose when naming the file (most likely 0).

SYSTEM (DRIVE=d,DRIVER="XTRSHARD",ENABLE)

Enter unit number ([0]-7): u

FORMAT d (DIR=1)

Answer the questions asked by FORMAT as you prefer. If you are curious about the DIR=1 parameter to FORMAT, see mkdisk. You can repeat these steps with different values of d and u to have more than one hard drive.

Finally, it's a good idea to give the SYSTEM (SYSGEN) command (Model I/III) or SYSGEN command (Model 4). This command saves the SYSTEM settings, so the drive will be available again the next time you reboot or restart the emulator. If you need to access the hard disk file after booting from a floppy that hasn't been SYSGENed, simply use the same SYSTEM command(s) again, but don't FORMAT. You can freely use a different drive number or a different unit number.

Technical note:

XTRSHARD/DCT is a small Z-80 program that implements all the required functions of an LDOS disk driver. Instead of talking to a real (or emulated) hard disk controller, however, it uses special support in WinTRS80 that allows Z-80 programs to open, close, read, and write files directly. This support is described further in the next section. Because WinTRS80 does not emulate real hard drive controller hardware, hard disk drivers other than XTRSHARD/DCT will not work with it.

Data import and export

The emulated floppy utility.dsk contains some programs for transferring data between the emulator and ordinary files. All the programs run on the emulator under Model I/III LDOS and Model 4 TRSDOS/LS-DOS 6; some also work under other TRS-80 operating systems.

IMPORT/CMD imports a file and writes it to an emulated disk.

Usage:

IMPORT [-n] dosfile trsfile. The -n flag converts Dos newlines (\n) to TRS-80 newlines (\r). IMPORT/CMD may not work correctly under operating systems other than Model I/III LDOS and Model 4 TRSDOS/LS-DOS 6. IMPORT/BAS is a much slower program that performs the same function but should work under more operating systems. Simply run it under Disk Basic and answer the prompts.

EXPORT/CMD reads a file from an emulated disk and exports it to a Dos file.

Usage:

EXPORT [-n] trsfile dosfile. The -n flag converts TRS-80 newlines (\r) to Dos newlines (\n). EXPORT/CMD may not work correctly under operating systems other than Model I/III LDOS and Model 4 TRSDOS/LS-DOS 6. EXPORT/BAS is a much slower program that performs the same function but should work under more operating systems. Simply run it under Disk Basic and answer the prompts.

SETTIME/CMD reads the date and time from Windows and sets the TRS-80 DOS's date and time accordingly. It has been tested only under LDOS but probably runs on other Model I/III operating systems. SETTIME6/CMD is the same program compiled for Model 4 TRSDOS/LS-DOS 6.

Interrupts

The emulator supports only interrupt mode 1. It will complain if your pro-gram enables interrupts after powerup without executing an IM 1 instruction first. All Model I/III/4 software does this, as the built-in peripherals in these machines supported only IM 1.

The Model I has a 40 Hz "heartbeat" clock interrupt, while the Model III used 30 Hz, and the Model 4 could run at either 30 Hz or 60 Hz. The emulator approximates this rather well even on a system where clock ticks come at some frequency that isn't divisible by the emulated frequency (e.g., 100 Hz on Intel Linux), as long as the true frequency is not slower than the emulated frequency. The emulator has a notion of the absolute time at which each tick is supposed to occur, and it asks the host system to wake it up at each of those times. The net result is that some ticks may be late, but there are always the proper number of ticks per second. For example, running in Model I mode on Intel Linux you'd see this pattern: (tick, 30ms, tick, 20ms,...) instead of seeing ticks every 25ms.

Options
/model

Specifies which TRS-80 model to emulate. Values accepted are 1 (Model I), 3 (Model III), and 4 (Model 4). If none is given, WinTRS80 starts in the same mode it was in when last exited.

Registry Entries
WinTRS80 maintains it’s settings in the system registry. It uses the

Key HKEY_LOCAL_MACHINE\SOFTWARE\WinTRS80 with separate entries for each model. Only the entry for the Sound Blaster I/O port must be edited here. All other entries are handled through the system menus.

Color

The color dialog box is selected from the options menu. This allows values to be entered for both the foreground and background. Values are from 0 to 255.

Utilities

I have included two other little utilities with WinTRS80. TRSDIR simply displays the directory of a JV3 format TRSDOS disk file. It prints out in exactly the same format as a TRSDOS DIR command. This will not work on other Dos formats. GetTRS dumps all files from a TRSDOS JV3 file to the current directory. This is a quick way to export data! Other packages are available to manipulate disk images that work better than these, but I had them handy....

Other Resources:

There are many other TRS-80 resources available on the Web, including shareware and freeware emulators that run under MSDOS and other operating systems, software for converting TRS-80 physical media to the emulator's disk file format, ROM images, and TRS-80 software that has already been converted. For pointers, see

http://www.research.digital.com/SRC/personal/Tim_Mann/trs80.html.

Bugs and limitations

There may be bugs in the Z-80 emulator which we haven't found yet. Some of the more bizarre undocumented Z-80 instructions are not implemented.

Cassette emulation does not work in Model 4 mode. Even in Model I/III mode, it works only for programs that use the Level II ROM routines to access the cassette; the emulator looks for access to the cassette port from specific PC values to activate the feature.

Serial ports are not emulated.

Some features of the disk controller are not currently emulated. (1) Force Interrupt with condition bits 0x01, 0x02, or 0x04 is not implemented. (2) Read Track is not implemented. (3) The multiple-sector flags in Read and Write are not implemented.

The emulator arbitrarily limits both JV1 and JV3 disk images to 96 tracks. The limit could easily be increased to 255 or maybe 256, but that would probably not be useful with existing TRS-80 operating systems, which don't expect floppies to have so many tracks. For example, LDOS 5.3.1 allows at most 95 tracks on a floppy, though it allows more on hard drives. 256 tracks is an absolute maximum for the TRS-80 floppy disk controller and for the JV3 format.

The extended JV3 limit of 5802 sectors is somewhat arbitrary as well. It could be raised by generalizing the code to permit more than two blocks of 2901. Again, this does not seem too useful. 5802 sectors is already enough for a 3" HD (1.44MB) floppy, which the TRS-80 didn't support anyway.

The emulator guesses a romfile is in .hex format if its first byte is a colon (':'), so a raw binary ROM image can't start with that byte value. In the future it would be nice to accept MODELA/III files too.

The import/cmd and export/cmd programs do not work on NEWDOS/80.

If you discover other bugs, or write fixes for any of these, please let us know. We expect to incorporate fixes into future releases.

Authors and acknowledgements

WinTRS80 was written by Wade Fincher <wade@sisko.asub.arknet.edu> at Arkansas State University - Beebe. This was primarily a learning exercise in Visual C++ 5.0 and a trip down memory lane. It is based on other emulators available with many enhancements.

xtrs was written by David Gingold <gingold@think.com> of Thinking Machines Corporation, Alec Wolman <wolman@crl.dec.com> of Digital Equipment Corporation, and Timothy Mann <mann@pa.dec.com> of Digital Equipment Corporation.

